 Found: C, 61.05; H, 6.49; N, 3.56.

Spatial relationships between the benzyl ant 2-methyl derivatives remain uncertain.

N-Substitution of V.- Introthetion al substiluents intor 1position of V followed typical procedures described in the pruvious paper. ${ }^{1}$ Products are presented in Table Il (1-8).

Synthesis of VII..--VI was refluxed with $48 \% \mathrm{HBr}$ for $20-\mathrm{F}, \mathrm{jl}$ min. and worked up in the usual way. The products are prosented in Table II $(9-16)$.

1-Acetyl-2,3-dimethyl-3-(3-methoxyphenyl)piperidine.--A'slyl chloride (0.59 g .) in acetone (3 ml .) was added to a mixture of $\left.V\left(\mathrm{R}=\mathrm{CH}_{3}\right)(1.1 \mathrm{~g}),. \mathrm{K}_{3} \mathrm{Cl}\right)_{3}(1 \mathrm{~g}$.$) , and acetone (21) ml.) at.$ 24° over a period of 20 min . The mixture was stired at $2-4^{\circ}$

For 1 hr., alis room temperature for is in., then allowed to sham overnight at room temperature and filvered. Arelone wan romoved by distillation and the residue was disoblved in whed. washed with waler, dried, and evaporated. Histillation ail the.

Acknowledgment.-The authors wish to thank Drs. Everette L. Say and Nathan B. Eddy for the aid in arranging some of the compounds described here and previously for the monkey test of addiction liahilit. at the University of Michigan.

Analgetics Based on the Pyrrolidine Ring. IV

J. I. Cavatha, D. C. Brehor, R. A. Sehilay, N. Li. Webb,
Pa,te, Davis and Company, Hourslor, M Whllover, Englard.
C. V. Winderr, AN1 M. Welforlı
Parke, Davis and Company. Irn . 1 boor, Mrhigan
Received S'eptember 19, 196.'

Abstract

Following the discovery of the meperidine level of analgetic activity in the pyrrolidinyphenol (I), over seventy additional compounds of this type have been synthesized. The chosen routes to these compounds provide, in some instances, novel aspects of synthetic pyrolidine chemistry. Pharmacologically, few, if any, of the additional compounds prepared had activity as great as the original I: the activity of I ilself was lound whe dintributed between its d and l optical isomers in a ratio of $1: 2$.

In carlier work on pyrrolidine analgetics ${ }^{1}$ we showed that the inclusion of a further alkyl substituent in the pyrrolidine ring changed a compound of sub-codeine activity (II, $\mathrm{R}=\mathrm{H}$) into one having clear analgetic activity [II, $\mathrm{R}=2$ - or $4-\mathrm{CH}_{3}$ or $2,5-\left(\mathrm{CH}_{3}\right)_{2}$]. When, therefore, we found a meperidine level of action in the pyrolidinylphenol (I), ${ }^{2}$ we decided to effect substitutions in the free positions of the ring; from this we were led to effect changes in other parts of the molecule.

Chemistry.-While the 3,3-diarylpyrrolidines have been fairly extensively examined, the 3 -alkyl-3-aryl and the $3,(2,4$, or 5)-dialkyl-3-arylpyrrolidines har. received littleattention. ${ }^{3}$

The major intermediate in our work was the chlor(onitrile IV, prepared by alkylating the appropriate benzyl cyanide with sodamide and an alkyl bromide, then treating the product III with more sodamide and 1,2 dichloroethane. Reduction of the chloronitrile IV with lithium aluminum hydride gave, in excellent yield,

[^0]the 3 ,3-disubstituted pyrrolidine V. Other chemical reducing agents found to be inactive were potassium borohydride-aluminum chloride in ether, stamous chloride, sodimn metabisulfite, and thourea dioxide. Catalytic hydrogenation followed by cyclization was also unsuccessful. Probably the nitrile group is so hindered that reductive dehalogenation precedes reduction of the nitrilc.

To prepare the e-substituted pyrolidines, the chloronitrile IV was allowed to react with a Crignard reagent in dibutyl ether when, on boiling, the Grignard complex VI cyclized spontaneously to the pyrroline VII. ${ }^{4}$ It was found preferable to isolate the pyrroline at this stage, even if only in an impure state, then reduce with lithium aluminum hydride to the pyrrolidine VIII rather than add the crude reaction mixture directly to the hydride. Catalytic hydrogenation with a varicty of catalysts (Rancy nickel alone and with anmonia,

[^1]platinum in neutral and acid medium, and rhodium on alumina) was generally not satisfactory. In one case (VII, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7} ; \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$) where catalytic hydrogenation of the pyrroline was successful, the resultant pyrrolidine appeared isomeric (threo-erythro isomerism?) with that obtained from chemical reduction.

When a m-methoxy group was present (III-VIII, R $=\mathrm{OCH}_{3}$), the above sequence of reactions did not proceed so straightforwardly. Thus in the Grignard step (IV \rightarrow VI), both the yield and the nature of the products obtained were dependent upon the temperature at which the reaction was performed and on the nature of the Grignard. With methylmagnesium iodide, when the solvent was kept at 125°, the expected product (VII, $\mathrm{R}=\mathrm{OCH}_{3}$) was obtained but, if the dibutyl ether (b.p. 142°) were refluxed, partial demethylation occurred and a phenolic zwitterion (VII, R $=\mathrm{OH}$) was isolated. From the analytical figures, the N-methyl structure could not be excluded, but our proposed structure was confirned by reduction of the compound with lithium aluminum hydride to the pyrrolidine (VIII, $\mathrm{R}=\mathrm{OH}$) which on acetylation gave the N, O-diacetate (IX).

When ethylmagnesium iodide was used, both the normal product (VII, $\mathrm{R}=\mathrm{OCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7} ; \mathrm{R}^{\prime \prime}=$ $\mathrm{C}_{2} \mathrm{H}_{5}$) and the zwitterion (VII, $\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7}$; $\mathrm{R}^{\prime \prime}=\mathrm{C}_{2} \mathrm{H}_{5}$) were formed, although the normal product was more stable than the analogous methyl compound and could be isolated from reactions where the dibutyl ether had been allowed to boil. With propylmagnesium iodide, no demethylation occurred even after 4 hr . of refluxing; only the methoxypyrroline (VII, $\mathrm{R}=\mathrm{OCH}_{3}$; $R^{\prime}=R^{\prime \prime}=\mathrm{C}_{3} \mathrm{H}_{7}$) was isolated.

It is noteworthy that the infrared spectra of the three pyrrolidinyl phenols (XI, $\mathrm{R}=\mathrm{OH} ; \mathrm{R}^{\prime}=\mathrm{C}_{3} \mathrm{H}_{7} ; \mathrm{R}^{\prime \prime}=$ $\mathrm{CH}_{3}, \mathrm{C}_{3} \mathrm{H}_{5}$, or $\mathrm{C}_{3} \mathrm{H}_{7}$) show a gradation in the zwitterionic character of the compound. Thus, in the $2500-3500-$ cm. ${ }^{-1}$ region the NH^{+}absorption of the $2-\mathrm{CH}_{3}$ compound is intense, that of the $2-\mathrm{C}_{2} \mathrm{H}_{5}$ is moderate, while the $2-\mathrm{C}_{3} \mathrm{H}_{7}$ shows hardly any NH^{+}absorption, and only OH peaks can be seen.

On one occasion excess methyl iodide was used to make the methylmagnesium iodide prepared for reaction with the m-methoxyphenylchlorbutyronitrile (IV, $\mathrm{R}=\mathrm{OCH}_{3}$), when the solvent was not refluxed. The unreacted methyl iodide then stayed in the reaction mixture until the pyrroline VII was formed, when reaction between them occurred with the formation of the quaternary pyrrolinium iodide (X). This sequence was confirmed by treating the freshly prepared pyrroline with methyl iodide to obtain the same quaternary. Reduction of X with lithium aluminum hydride gave the N-methylpyrrolidine (XI). No such quaternaries could be obtained with the 2-ethyl- or 2-propylpyrrolines, even on treating the pure pyrroline with methyl iodide.

Apart from the reduction of pyrroline quaternaries, the pyrrolidines obtained by these routes were unsubstituted on the nitrogen atom. Methylation at this postion (VIII \rightarrow XI) was readily effected by boiling with formic acid-formaldehyde mixtures. Demethylation of the m-methoxy group was accomplished by boiling with hydrobromic acid. ${ }^{2}$

In an attenipt to improve the yields obtained from the reaction of the chloronitriles IV with Grignard reagents, the 2-phenylvaleronitrile (III, $R=H ; R^{\prime}=$ $\mathrm{C}_{3} \mathrm{H}_{7}$) was alkylated with 2-ethoxyethyl bromide to give the ether XII which with methylnagnesium iodide gave the imine XIII, readily reduced with lithium aluminum hydride to the analogous amine. Difficulty, however, was experienced both in removing the protecting ethyl group and effecting cyclization of the resulting hydroxylamine; the route was not further examined.

The 4 -alkylated pyrrolidines (XVI, $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$ or $\mathrm{C}_{3} \mathrm{H}_{7}$) were obtained by reaction of valeronitrile III with ethyl α-bromopropionate or ethyl α-bromovalerate to give the ester nitrile XIV. This with lithium aluminum hydride gave the hydroxylamine XV which, with thionyl chloride followed by elimination of the elements of hydrochloric acid, cyclized to the pyrrolidine XVI.

The only i-alkyl compounds prepared were hose having the i-methyl substituent XXI. These were preparcd by treating the valeronitrile $1 I I$ with propylene oxide to give the hydroxynitrile XVIl. From the infrared spectrum of the produce it was seen that it existed manly as the imino ether XVII. Probably for this reason, reaction of the compound with halogenating agents was unsatisfactory. Only in the case of the unsubstitnted phenyl compound XVIII ($\mathrm{K}=\mathrm{H}$) was it found possible to procecd to the halogenonitrile XIX and from there to the pyrolidine XXI by reduction and rylization. When the phenyl group was substituted (XVILI, $\mathrm{R}=\left(\mathrm{CH}_{3}\right)$, the hydroxymitrite inimo ether misture was redured to the unequisocal hydrosylamine XX which, using previous terhnitues, pave the pyrolidine XXI without isolation of the hatogenoannine.

XVII

XIX

XX

XXI

Attempts to improve yields in the synthesis of I were were generally disappointing. 'lireatment of 1 -chloro-1-1/n-1ncthoxyphenylbutane with sodiun cyanide resulted in considerable dehydiohalogenation, Substitution of 1 -bromo-2-chloroethane or 1,2-dibromoethane for 1,2 -dichloroethane in alliylation of $I I I \quad\left(\mathrm{R}^{\prime}=\right.$ (${ }_{4} \mathrm{H}_{-}$) 10 IV resulted in little inprovement. Ethylenimine failed 10 react with III ($\mathrm{R}^{\prime}=\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)$ to give the aminomitrile XXII. Substituion of ethylene oxide for propylene oxide to produce the inmo ether XXII ${ }^{3}$ pave poor yields and the major product appeared to be the high-boiling polyether XXIV. The substitution of rhlorohydrin for ethylene oxide gave no better yields.
(5) F. 11, tf mann-La Rocha، Bribish F'aumt 811,698 (Agril 8, 1950).
(b) $1:$ E. Ning, K (: Latham, and N. W. Nartridga, J. Chem. has $4208(1252$

XXH

XX1II

XXIV

From the inmino aher that was obtained from these routes, however, hle corresponding lartone XXV was readily prepared and with methymine, mender pressure. gave the lartan XXVI. It is of interest that the contesponding i-melhyt lacione XXVIl ohtained by hydrolysis of the immo riner XVIll gave no lactan with hed hylanine under the mose foredig ronditions. unlike the sinpler compound XXVElI whirh gave it lactan with ammonia.' The lactam XXYl gave the pyrolidne with lithmm aluminum hydride, but decwolvid redur ion' was not effertive.

XXV

xXVI

XXVIII

Substitution, wher than m-methoxy, on the 3 -phenyl group was arhieved by starting with the appropriately substituted butyrophenone following the syithers given in our earlicu work."

Finally, variation of the nitrogen substitutent was offered by treating a pyrolidine possersing a frece XH group (V) einher with the requisite alkyl hatide or. in onc case. with a Mamich base guaternary following procedures deseribed earlier. ${ }^{1}$ The X-oxide was obtained by treating the X-methyl rompount with monoperphthalic acid.

Attempts 10 resolve the most ardive componnd I as its methyl oher with d- and l-tartaris ardid wore minsucesstul. Upon using d - and $/$-tolyliartarie and. howerer, the two optical isoners were obtaned whith. whth the rentomaty chenieal proeedures, gave the 1 wo isomerie phemols and the wo atedates.

Experimental ${ }^{9}$

The physical properies of the compounds prepared are calleuted in Tables I-I'. Thu: experimental details given here directly relate to those iables.

Substituted Benzyl Cyanides (Table I), Method A. -- This method is modeled on that of Murray and Cloke. ${ }^{10}$ The benzyl wanide (1 mole) was added to a suspension of sodamide il mole) in dry benzene (11.) while keeping the temperature below 5°, and stirred at this temperature for 1 hr . The alkyl hatide

[^2](1.1 moles) was then added slowly to the stirred mixture (temperature still below 5°). With continuous stirring, the whole was allowed to attain room temperature during 2 hr . The mixture was then refluxed for $3 \mathrm{hr} .$, cooled, washed with water, dilute acid, and water until neutral and then concentrated and distilled in vacuo.

Method B-The monosubstituted benzyl cyanide (1 mole) in dry benzene (600 ml .) was added to a stirred suspension of sodamide (1 mole) in dry benzene (11 .) through which a stream of dry nitrogen was passing. No attempt was made to cool the reaction mixture; for convenience the addition was begun with the sodamide suspension at approximately 40°. Once addition was complete the mixture was refluxed and stirred for 3 hr . while continuing the passage of nitrogen. Heating was discontinued, the mixture was cooled to $5-10^{\circ}$, then treated slowly with the alkyl halide (1 mole). Generally, an exothermic rea('. tion ensued, and efficient cooling was needed to maintain the temperature limils. After addition, the suspension was stirred, allowed to regain room temperature, refluxed for 3 hr ., cooled, washed with water, and distilled in vacuo.

Method C.-The monosubstituted benzyl cyanide (1 mole) in dry ether (401 ml .) was added to a stirred suspension of sodamide (1 mole) in dry ether (700 ml .) through which a stream of nitrogen was passing. An exothermic reaction ensued, and the solvent boiled. After addition of the nitrile, the minture was stirred and refluxed for 3 hr ., (nitrogen atmosphere). The heat was then removed and the alkylene oxide (1.1 moles) was added in dry ether (200 ml .). After addition, the mixture was again refluxed for 2 hr ., cooled, and washed with water. Concentration and distillation in vacuo gave the product as a mixture of hydroxynitrile and imino ether.

Method D.-The appropriate hydroxynitrile, imino ether, or nitrile ester (1 mole) in dry ether (400 ml .) was added to a suspension of lithium aluminum hydride ($1-2$ moles) in dry ether (600 ml .) with stirring. The mixture was then refluxed for 4 hr ., 5 N caustic soda (50 ml .) was then added cautiously, and reflux and stirring were continued for another hour. The mixture was filtered, concentrated, and distilled to give the required hy-droxyl-or alkoxyamine.

Method E.-The hydroxynitrile-imino ether mixture (1 mole) was added cautiously to phosphorus tribromide (2.5 moles). The mixture was refluxed for 30 min ., cooled, and poured into ice-water. Extraction with benzene gave a light red oil which, on distillation in vacuo, gave the bromonitrile.

Method F.-Was essentially the method of Icke, et al. ${ }^{11}$
Method \mathbf{G}.-The cyano ether (23.1 g .) in dry toluene (150 ml .) was added to a solution of methylmagnesium iodide [from 2.6 g. of $M \mathrm{~g}$ in dry ether (100 ml .) l. The ether was removed by distillation while replacing the lost volume with dry toluene. The toluene solution was refluxed gently overnight, cooled, shaken vigorously with $\mathrm{NH}_{4} \mathrm{Cl}$ and ice-water, concentrated, and distilled in vacuo to give the imine.

Substituted Acrylic Esters (Table II).-These compounds were prepared following the method described in our previous work. ${ }^{2}$

Succinimides (Table III),-These compounds were prepared following the previously described method. ${ }^{2}$

Pyrrolines. Method \mathbf{H}.-The chloronitrile (1 mole) in dibutyl ether (400 ml .) was added to a solution of the appropriate Grignard reagent (3 moles) in dibutyl ether (800 ml .), and the whole was refluxed and stirred for 6 hr . The mixture was cooled and shaken vigorously with $\mathrm{NH}_{4} \mathrm{Cl}$ and ice-water (30\%). The ether solution was concentrated and the crude pyrroline was either distilled or used as such.

Method I-Using 3-cyano-3-(m-methoxyphenyl)hexyl chloride and methylmagnesium iodide in method H gave, after the addition of the cold aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, an insoluble viscous gum which, on trituration with chloroform, furnished a crystalline solid. Further quantities of this solid were obtained from the dibutyl ether. In a potentiometric titration it had $\mathrm{p} K=5.3$ and 12.0, corresponding to the basic nitrogen and the phenolic hydroxyl. The structure for this compound was confirmed by conversion to 3-(m-acetoxyphenyl)-1-acetyl-2-methyl-3-propylpyrrolidine (Table IV).

Method J.-Method H was followed except that the dibutyl ether solution was kept at 125° for 4 hr . then hydrolyzed with 30% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at 60°.
(11) R. N. Icke, B. B. Wisegarver. and G. A. Alles in "Organic Syntheses." Coll. Vol. I1I, E. C. Horning. Ed., John Wiley and Sons, Inc., New York. N. Y., 1955، p. 723.

Method K.-Following method H but refluxing for only 4 hr . gave an insoluble gum which, on trituration with chloroform. yielded the phenolic zwitterion, m.p. 144-148 ${ }^{\circ}$. Concentration of the dibutyl ether laver gave the m-methoxyphenylpyrroline, b.p. $140-150^{\circ}(1.0 \mathrm{~mm}$.), which was not purified. As with the corresponding 2-methyl compound (method I) confirmation of the phenolic structure was obtained by preparation of the N, O diacetate (Table IV).

Method L-Using an excess of methyl iodide (1.8 moles) when making the Grignard reagent in dibutyl ether for use in method J gave a larger-than-usual quantity of insoluble gum. On trituration with ether this furnished the pyrrolinium quaternary, identical with that obtained by treating freshly distilled 3-(m-methoxyphenyl)-2-methyl-3-propylpyrrol-1-ine with methyl iodide in acetone.

Pyrrolidones and lactones (method \mathbf{M}) were prepared from crude 3 -cyano-3-(m-methoxyphenyl)-1-hexanol following the Hoffmann-I a Roche method. ${ }^{\mathbf{5}}$

Method N.-3-Cyano-3-phenyl-1-hexanol ${ }^{5}$ (24 g .) in aqueous methylamine ($120 \mathrm{mll} ., 40 \%$) was held at 190° (autoclave) overnight. Distillation in vacuo gave the pyrrolidone.

Substituted Pyrrolidines (Table IV), Method O.-The appropriate succinimide (Table III) was reduced with lithium aluminum hydride ${ }^{12}$ to give the pyrrolidine.

Method $\mathbf{P}_{\mathbf{r}}$-The appropriate halogenonitrile (Table I) (1 mole) in dry ether was added to a stirred suspension of lithium aluminum hydride (1 mole) in dry ether. The mixture was refluxed for 6 hr . then worked up following method D.

Method \mathbf{Q},-The appropriate pyrroline (Table III) (1 mole) was reduced with lithium aluminum hydride (1 mole) following method D.

Method \mathbf{R}.-The pyrroline (5.2 g .) in absolute ethanol (100 ml .) containing concentrated $\mathrm{HCl}(2.5 \mathrm{ml}$.) was shaken at atmospheric pressure and 50° with palladized charcoal (0.5 g ., 10%) and hydrogen; 470 ml . (theory, 580 mll .) was absorbed. Filtration, concentration, basification, and ether extraction followed by distillation in vacuo gave the pyrrolidine.

Method S.-The appropriate hydroxylamine (Table I) (1 mole) in chloroform (500 ml .) was saturated with HCl , cooled to 0°, and treated with thionyl chloride (2 moles). The mixture was stirred and allowed to regain room temperature, brought to reflux temperature during 1 hr ., and held there for 2 hr . The solution was concentrated, poured into water, and strongly basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the stirred mixture was kept at 95° for 1 hr . Isolation and fractional distillation of the resulting water-insoluble oil gave the required pyrrolidine.

Method T.-The pyrroline methiodide (Table III) (5 g .), slurried in dibutyl ether (125 ml .), was added to a stirred suspension of lithium aluninum hydride (1 g .) in dibutyl ether (25 ml .). The whole was refluxed and stirred for 1 hr . Water (5 nıl.) was added cautiously, and the mixture was stirred for 20 min . filtered, concentrated, and distilled.

Method U,-The appropriate methyl ether (Table IV) (0.1 mole) in hydrobromic acid ($90 \mathrm{ml}, 48 \%$) was refluxed for 3 hr . and concentrated in vacuo to an oil. It was dissolved in water (100 ml .) and basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the precipitated oil was isolated by extraction with five $80-\mathrm{ml}$. portions of a benzeneether mixture ($2: 1$).

Method \mathbf{V}.-The phenol (or, in one case, the secondary alcohol) (0.1 mole) in pyridine (40 ml .) with the appropriate acid anhydride (80 ml .) was held at 110° for 2 hr ., and the mixture was concentrated and distilled in vacuo.

Method W,-The phenolic pyrroline (Table III) (1 mole) was reduced to the corresponding pyrrolidine in dry tetrahydrofuran using lithium aluminum hydride (1 mole) (method D). The crude product was then acetylated according to method V.

Method X.-The preparation of compounds somewhat similar to these is described in our earlier work. ${ }^{1}$

Method Y.-The racemic 3-(m-methoxyphenyl)-1-methyl-3propylpyrrolidine (150 g .) in 2-propanol (1.5 l .) at 50° was treated with a solution of (-)-di- p-toluyl-L-tartaric acid (273 g.) in 2-propanol (1.2 1.) to give, on cooling and standing, the crude salt (253 g .), m.p. $121-123^{\circ}$, brought by three further crystallizations from 2-propanol to m.p. 138° (119 g.), $[\alpha]^{25} \mathrm{D}$ -89.4° ($c 0.8$, ethanol).
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO} \cdot \mathrm{C}_{20} \mathrm{H}_{88} \mathrm{O}_{3}: \mathrm{C}, 67.8 ; \mathrm{H}, 6.7 ;$ N, 2.3. Found: C, 67.7; H, 6.7; N, 2.2.
(12) K. C. Schreiber and V. P. Fernandez, J. Org. Chem., 26, 1744 (1961).

Tabrel

Sibxtmate Bentyl Cyanddes

12	$1 i^{\prime}$	$16^{\prime \prime}$	$11^{\prime \prime \prime}$	H.1.. ${ }^{\circ} \mathrm{C}$ ((31m.)	${ }^{\prime 2}{ }^{2} \mathrm{D}$	Netbeid	Yieln, \%	Fucunula	0	$\begin{gathered} (: 3 \mathrm{lr}+\mathrm{d} \\ 1 \mathrm{l} \end{gathered}$	$\underset{r}{ }$	0	$\begin{aligned} & \text { Puasil, } \\ & 11 \end{aligned}$	\cdots
H	${ }^{\prime \prime}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right.$	${ }^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{Br}$	CN	115 (0.4)	1.5829	F	(6)	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Br} \mathrm{N}$	\% \% 19	6.1	5.3	9) \%	6.8	50
H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CHBrCH}$	CN	$117120(0.3)$	1.5296	E	67	$\mathrm{C}_{14} \mathrm{H},{ }_{8} \mathrm{Br} \mathrm{N}$	60.0	6.5		60.2	6.4	
H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\text {i }}$	CN	125-130(0.8)	1.51238	C	70	$\mathrm{C}_{4} \mathrm{H}_{49} \mathrm{NO}$	77.4	8.s	6.5	78	9.3	9.3
II	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}$	(N	114 (0.5)	1.4950	B	58	$\mathrm{C}_{15} \mathrm{IH}_{21} \mathrm{NO}$	7\%.9	9.2	6.1	75	$9 .!$	13.1
II	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$	(N	125-132 (0.4)	1. 5410	B	20	$\mathrm{C}_{4} \mathrm{H}_{20} \mathrm{~N}_{7}$	77.7	9.3	13.0	77.2	3.1	13.2
11	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{4}$	ON	134-140(0.7)	1.5000	B	42	$\left.\mathrm{C}_{16} \mathrm{H}_{41} \mathrm{NO}\right)_{2}$	74.1	8.2	\%1. 1	74.!	8.4	5.5
H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	($\mathrm{H}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}$	(HENH_{2}	14, -152 (0.8)	1.5382	I)	73	$\mathrm{C}_{14} \mathrm{I}_{2 ;} \mathrm{NO}$	76.0	10.5	$6 .: 3$	-if.	10.6	6. 1
H	${ }^{-} \mathrm{C}_{3} \mathrm{SH}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}_{4} \mathrm{OC} \mathrm{CH}_{5}$	C(NH)CH:	117 (0.4)	1.5040	i	35	$\left(\mathrm{C}_{16} \mathrm{H}_{4} \mathrm{NO}\right)$	77.7	11).2		-5. 1	10.1	
H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	($\mathrm{H}_{2} \mathrm{CH}$	CH(NH.CH:	119 (0.3)	1.5099	$1)$	41	$\left(3 \mathrm{H}_{4} \mathrm{NO}\right)$	77.1	10.!		72	11.0	
$\mathrm{CH}_{3} \mathrm{O}$	$\left(\mathrm{CH}_{5}\right.$	H	CN	101)-102 (0.4)	1.5142	A	$90^{\prime \prime}$	$\mathrm{Cl}_{1} \mathrm{H}_{13} \mathrm{NO}$	75.1	7. 5	$\therefore 0$	76.2	7.7	7.7
$\mathrm{CH}_{3} \mathrm{O}$	${ }_{6}-\mathrm{C}_{2} \mathrm{H}_{\text {c }}$	H	CN	112 115 (0.9)	1.5165	A	90	$\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{NO}$	76.2	8.0	$7 .-1$	76.1	S. 4	i i
$\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{4} \mathrm{H}_{3}$	H	CN	115120(0.4)	1.50x ${ }^{1}$	A	※:;	$\left(\mathrm{C}_{43} \mathrm{H}_{4} \mathrm{~N}^{\mathrm{N}}\right.$)	76.8	A. 4	(6.)	7.7	S. 2	6.4
$\mathrm{CH}_{3} \mathrm{O}$	CH_{5}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	(N	$127-1334(0.6)$	1.525!	B	43	$\mathrm{C}_{33} \mathrm{H}_{16} \mathrm{CLNO}$	(0). i	1i. S	14.! ${ }^{\prime \prime}$	(6).:	6.8	1.1.8"
$\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	1 N	131-136(0.5)	1.5220	13	50	$\left({ }_{1+1} \mathrm{I}_{18} \mathrm{CHNO}\right.$	66.9	7.2	11.15	(6) . 1	7.5	1\%.7
$\left.\mathrm{CH}_{3} \mathrm{O}\right)$	${ }^{-1}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	ON	$140-146(0.7)$	1.5310	B	43^{*}	$\left(\mathrm{C}_{4} \mathrm{H}_{18} \mathrm{BrNo}\right.$			$\because 7.0$			$\cdots 4.4$
$\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{4} \mathrm{H}_{3}$	$\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right.$	CN	145-145(0.7)	1. $\overline{5} 164$	B	$56{ }^{\text {a }}$	$\left({ }_{3} \mathrm{H}_{44} \mathrm{ClNO}\right.$	67.	7.15	$13.4{ }^{2}$	711.1	\therefore A 4	$10.0{ }^{\text {\% }}$
$\mathrm{CH}_{3} \mathrm{O}$	${ }^{\prime}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}_{5} \mathrm{O} \mathrm{OH}$	CN	14015010.81	1.5204	C	'	$\left.\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}\right)_{2}$	72.1	$\bigcirc:$	6.0	71.is	8.0	$\therefore .6$
$\mathrm{CH}_{3} \mathrm{O}$	${ }^{1}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	(N	$14 ; 146(0.7)$	1.5270	(-2	$\mathrm{C}_{1} \mathrm{H}_{2}, \mathrm{NO} \mathrm{S}_{2}$	72.4	$\therefore 6$	$\overline{5} 7$	73.	11.2	$\therefore . \mathrm{C}$
$\mathrm{CH}_{3} \mathrm{O}$	${ }_{1-\mathrm{C}_{3} \mathrm{H}_{i}}$	$\mathrm{CH}\left(\mathrm{CO}_{4} \mathrm{C}_{2} \mathrm{H}_{3}\right) \mathrm{CH}_{3}$	CN	$145-150(0.7)$	1.5037	13	5.5	$\mathrm{C}_{17}^{1} \mathrm{H}_{23} \mathrm{NO}_{3}$	70.6	$\therefore 0$	4.5	70.1	S. 11	1. 3
$\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{m}-\mathrm{C}_{3} \mathrm{IH}_{7}$	$\mathrm{CH}^{(\mathrm{H}}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{C}_{3} \mathrm{H}_{4}$	ON	142-150 (0.s)	1.5062	13	23	$\mathrm{Cim}_{4} \mathrm{H}_{4} \mathrm{NO}_{3}$	71.9	A. 6	4.1	71.5	S.	1.6
$\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{4} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	${ }^{\text {C }} \mathrm{H}_{2} \mathrm{NH}_{2}$	15: $2-155$ (0.5)	1.3002	1)	(9)	$\mathrm{C}_{1} \mathrm{SI}_{2} \mathrm{NO}_{2}$	71.7	10.0	5. 6	72.0	10.1	$\therefore 5$
$\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{4}$	$\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{3}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	$16 i j-165)(0.7)$	1.5400	1)	Nos	$\mathrm{C}_{4} \mathrm{H}_{45} \mathrm{NO}_{2}$	71.7	10.0	5.0	71. ${ }^{\text {a }}$	10.4	5.4
$\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{C}_{3} \mathrm{H}_{5}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	180-190 (0. (i)	*	1)	5%	$\left.\mathrm{C}_{3} \mathrm{H}_{29} \mathrm{NO}\right)_{2}$	73.1	10.5	5.0	-3.3	10.4	1.7
$\left(\mathrm{H}_{3} \mathrm{O}\right.$	${ }_{1-\mathrm{C}_{3} \mathrm{H}_{7}}$	$\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{3}$	$\mathrm{CH}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$.	129)-130		F^{\prime}	41)	$\left.\mathrm{O}_{17} \mathrm{H}_{3} \mathrm{NO}\right)_{2}$	73.1	10.5	5.0	73.1	10.0	$4!1$
($\mathrm{H}_{3} \mathrm{O}$)	${ }_{17-\mathrm{C}_{3} \mathrm{H}_{7}}$	$\mathrm{CH}\left(\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{3}\right.$	($\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)^{2}$	179-180	$!$			$\left.\mathrm{C}_{1 i} \mathrm{H}_{3 i 0} \mathrm{CINO}\right)_{4}$	1.4. 5	! $\overline{5}$	4.1	10.1.4	9.0	1.3

Table II
Subsitrured Efhyl Acrylates

$m-\mathrm{OH}$	CH_{3}	CH_{3}	142^{a}		54	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$	65.7	6.0	6.4	65.8	6.0	6.1
$o-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	G 4 m	b	69	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}$	68.9	7.3	5.4	69.9	7.5	5.1
$p-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	$180-184(0.4)$	b	52	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}$	68.9	7.3	5.4	68.9	6.9	5.2
$m-\mathrm{CH}_{3}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	$150-153(0.9)$		62	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$	73.4	7.8	5.7	73.3	7.7	5.6
$m-\mathrm{Cl}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	$134-136(0.2)$	1.5498	70	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{2}$	63.2	6.0	5.3	62.6	6.1	5.0
$m, p-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	$94-96^{a}$		30	$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$	66.0	7.3	4.8	65.6	7.3	5.1

Pyrrolidones and Lactones

| H | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | CH_{3} | $110-111(1.0)$ | 1.5250 | 41 | $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}$ | 83.5 | 9.5 | 7.0 | 83.5 | 9.7 | 6.5 | H | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OH | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | CH_{3} | $141-143^{a}$ | | 28 | $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ | 77.4 | 8.8 | 6.5 | 77.3 | 9.3 | 6.1 | I | |
| $\mathrm{CH}_{3} \mathrm{O}$ | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | CH_{3} | $13 \overline{-}-150(0.4)$ | 1.53^{c} | 35 | $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ | 77.9 | 9.2 | 6.1 | 76.9 | 9.6 | 6.1 | JO | |
| 0 H | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | $\mathrm{C}_{2} \mathrm{H}_{3}$ | $144-148^{a}$ | | 7 | $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ | 77.9 | 9.2 | 6.1 | 77.9 | 9.0 | 6.2 | K | |
| $\mathrm{CH}_{3} \mathrm{O}$ | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | $\mathrm{C}_{3} \mathrm{H}_{3}$ | $140-150(1.0)$ | 1.535^{c} | 20 | | | | | | | | K | |
| $\mathrm{CH}_{3} \mathrm{O}$ | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | CH_{3} | $147-148^{a}$ | | | | $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{IN} \mathrm{O}^{d}$ | 51.5 | 6.5 | 3.8 | 51.2 | 6.7 | 4.0 | L |

$\mathrm{CH}_{3} \mathrm{O}$		0	158-165 (0.8)	1.5278	28	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$	71.8	7.7		72.1	7.7		M
H	CH_{3}	N	130-140 (0.5)	1.5329	69	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$	77.4	8.8	6.5	77.8	9.0	6.1	N
Me		vise	r determina	n. ${ }^{\circ} \mathrm{Co}$		tained p	${ }^{d} \mathrm{M}$	1	dide	t			

The bulked mother liquors from the above, on slight concentration, gave a further 29 g . of levo base salt.

The mother liquors were concentrated and treated with aqueous potassium carbonate, and the oily base was isolated and converted to its (+)-di-p-toluyl-d-tartaric acid salt, m.p. 129-131 ${ }^{\circ}$ (215 g.). Two further crystallizations from 2-propanol brought this to m.p. $138-139^{\circ}(129 \mathrm{~g}),.[\alpha]^{23} \mathrm{D}+81.0^{\circ}(c 0.9$, ethanol $)$.

Anal. Found: C, 68.1; H, 6.9; N, 2.2.
Treatment of these salts with base gave quantitative recovery of the two optical isomers listed in Table IV.

Method \mathbf{Z}-Oxidation of the pyrrolidine (15 g .) in ether (350 ml .) with monoperphthalic acid (33 g .) at room temperature for 3 days gave an insoluble oily solid. The supernatant liquid was removed and the solid was dissolved in aqueous $2 N$ $\mathrm{Na}_{2} \mathrm{CO}$, and isolated with seven $100-\mathrm{ml}$. portions of chloroform. The crude buff solid was purified by crystallization from chloro-form-ether mixtures.

1-m-Methoxyphenyl-1-butanol,-m-Methoxybenzaldehyde $(1.8 \mathrm{~kg}$.) in dry ether (31.) was added to a stirred solution of propylmagnesium bromide (from 440 g . of nagnesium and 2.3
kg . of propyl bromide) in dry ether (5 1.). The mixture was refluxed for 7 hr ., cooled, and poured onto a stirred mixture of $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~kg}$.), water (4 l .), and crushed ice (3 kg .). Isolation in the normal way gave the almost pure secondary alcohol (2385 g.), a portion of which distilled at b.p. $106^{\circ}\left(0.8 \mathrm{~mm}\right.$.), $n^{20} \mathrm{D} 1.5236$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 73.3 ; \mathrm{H}, 9.0$. Found: C, 73.3 ; H, 8.9 .

1-Chloro-1-m-methoxyphenylbutane-1-m-Methoxyphenyl-1butanol (90 g .) in pyridine (55 ml .) was treated below 30° with thionyl chloride (66 g .) during 1 hr . The stirred mixture was warmed to 80°; an exothermic reaction set in and the temperature rose to 110°. The mixture was allowed to cool to 40°, poured into ice-water, and acidified with $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$. Isolation with ether and distillation gave the slightly impure secondary chloride (77 g .), b.p. $89-93^{\circ}\left(0.8 \mathrm{~mm}\right.$.), $n^{20} \mathrm{D}$ 1.5264, which was analyzed as follows.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClO}: \mathrm{C}, 66.5 ; \mathrm{H}, 7.6 ; \mathrm{CI}, 17.8$. Found: C, $68.3 ; \mathrm{H}, 8.1 ; \mathrm{Cl}, 15.7$.

Reaction of 1-Chloro-1- m-methoxyphenylbutane with Sodium Cyanide.--The secondary chloride (49g.) was added dropwise to

Sibstipleted Pyrbolidines

	1 l	$1{ }^{\prime}$	$\mathrm{R}^{\prime \prime}$	
1	II	$n-\mathrm{C}_{7} \mathrm{H}_{7}$	H	II
2	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	II
；	H	$n-\mathrm{C}_{3} \mathrm{H}_{i}$	$2-\mathrm{CH}_{3}$	II
1	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	H
5	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	H
G	II	$n-\mathrm{C}_{3} \mathrm{HI}_{7}$	$4-\mathrm{CH}_{3}$	H
7	II	$n-\mathrm{C}_{3} \mathrm{II}_{7}$	5－（）H3	H
s	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	ClH_{3}
！）	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$4-\mathrm{CH}_{4}$	CH_{3}
10	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	5－CH3	CH_{4}
11	${ }_{6}-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}
12	－（）II	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}
13）	${ }_{0} \mathrm{COH}_{3} \mathrm{CO}$	$r_{6}-\mathrm{C}_{3} \mathrm{H}_{7}$	II	CH_{3}
14	m－Cl	$n-\mathrm{C}_{3} \mathrm{H}_{2}$	H	CH_{3}
1.7	$\mathrm{m}^{2}-\mathrm{CH}_{3}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}
16	p－ $\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{II}_{5}$	H	CH_{3}
17	$p-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}
18	$p-\mathrm{CH}_{3} \mathrm{CO}_{3}$	${ }_{r}-\mathrm{C}_{3} \mathrm{H}_{7}$	H	OH_{3}
$1!$	$m, p-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{4}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	II	$\mathrm{Cl}^{\left(1 \mathrm{H}_{3}\right.}$
20	$m, p-(\mathrm{OH})$.	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}
21	$m-\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{3}$	H	H
$\underline{2}$ ）	$m-\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	H	（11\％
2）	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{1} \mathrm{H} \mathrm{H}_{\text {，}}$	H	H
$\because 4$	$m-\mathrm{C}^{\left(\mathrm{H}_{3} \mathrm{O}\right.}$	$n-\mathrm{C}_{4} \mathrm{H}_{4}$	H	CH：
25	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-C_{1} \mathrm{IH}_{T}$	$2-\mathrm{Cl}_{4}$	H
26	$m-\mathrm{CH}_{3}\left({ }^{\text {c }}\right.$	$n-\mathrm{C}_{3} \mathrm{H}_{5}$	${ }_{2}^{2} \mathrm{ClH}_{3}$	CH_{3}
27	$m-\mathrm{Cl}_{3} \mathrm{O}$	${ }_{1-}-\mathrm{C}_{3} \mathrm{H}_{7}$	4－C［ ${ }_{3}$	II
25	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{4}$	$4-\mathrm{CH}_{3}$	CH_{3}
29）	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{i}$	i） CHH_{3}	H
30	m－ $\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	5）－ $\mathrm{C}^{\mathbf{H}} \mathrm{H}_{3}$	CH_{4}
31	$m-\left(\mathrm{H}_{3} \mathrm{O}\right.$	$n-\mathrm{C}_{3} \mathrm{II}_{4}$	$2-\mathrm{C}_{4} \mathrm{H}_{5}$	H
32	$n-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	${ }_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	ClH_{3}
83）	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-n-\mathrm{C}_{3} \mathrm{H}_{7}$	H
34	m－ $\mathrm{CH}_{3} \mathrm{O}$	$r_{4}-\mathrm{CO}_{3} \mathrm{H}_{4}$	$2-n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}
35）	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{4}$	$4-n-\mathrm{C}_{3}^{4} \mathrm{H}_{7}$	H
36	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{4}$	$4-n-\mathrm{C}_{3} \mathrm{IF}_{5}$	CH_{4}
37	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	II	CH_{3} ，${ }^{\circ}$
38	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	II	C．H：
$3!$	／1／C： $\mathrm{II}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{4}$	H	

R＂＂

1．p．，${ }^{\circ} \mathrm{C}$（（10412．）	Me：11231	Yicher	$3^{144_{4}}$	Formalis	${ }^{\prime}$	11	N	（＇	II	N	［｜x｜＇，	، in L：O11
94.15 （0．5）	1 ＇	80）	1．5） 10	$\mathrm{C}_{13} \mathrm{H}_{1,} \mathrm{~N}$	\＄2．is	10.1	7.4	82.8	10.2	7.3		
100－1102（0．3）	R	4	1．52N2	$\left({ }_{14} \mathrm{H}_{21} \mathrm{~N}\right.$	82.7	10.4	（j．！）	S2．1；	10.2	7.0		
153－150．	R		b	$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}$	：0．1	9．：	\＃．	70.2	9.0	5．7		
110－125（1．0）	Q	30	1．523	$\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{~N}$	N2．7	10.4	（6．）	S2． 4	10.0	7．$\overline{7}$		
$231-23 \%$	Q		b	$\mathrm{C}_{14} \mathrm{H}_{3} \mathrm{Cl}$	70.1	9.3	14．8	7）． 4	19.4	14．9）		
120 （1．2）	S	72	1．is30 ${ }^{5}$	$\left({ }_{14} \mathrm{H}_{21} \mathrm{~N}\right.$	※2．	10． 1	（6．）	ふ2．2	10． 7	（6．7		
94－95（0．6）	I＇	S0	1．5214	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}$	\＄2．	10.4	（6）${ }^{\text {a }}$	ぶ2．8	10． 4	0.7		
123－125（2，5）	I	嫁	1．5心家	$\left({ }_{6} \mathrm{H}_{43} \mathrm{H}_{3} \mathrm{~N}\right.$	＊2．9	10.7	（6）	※＂万	10.8	13．2		
172 174＂	F	76	／	$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{CD} \mathrm{N}$	71.0	9.5	5．	70.7	9.9	5.6		
	F	so	1．5110	$\left({ }_{12} \mathrm{H}_{33} \mathrm{~N}\right.$	82．9	10.7	（6．i）	83．5	10.7	6．3）		
101 （0．5）	0	$6!$	1． $523:$	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{NO}$	75.2	9.9	6.0	$76 .!$	10.1	5.9		
163 169＂	1	72	d	$(1, \mathrm{H}=\mathrm{BrNO}$	－3．0	7．3	1.7	5）！	7.4	4.3		
$12 \mathrm{~S}(0.9)$	V	70	1．5164	$\left({ }_{16} \mathrm{H}_{23} \mathrm{~N}^{-} \mathrm{O}\right)_{4}$	7：	＊．！	i． 1	73．s	N．9	5． 3		
116－119（1．1）	0	（\％）	1．5．30	$\left(3, \mathrm{H}_{20} \mathrm{ClN}\right.$	70.8	8.1	万．9	70．	S． 6	G． 0		
141－142＂	（）	70	b	$\mathrm{Cl}_{5} \mathrm{H}_{2} \mathrm{CN}$	－1．0	！）．	$\bar{\square}$	71.2	9.4	\therefore		
115－126（0．5）	（）	12	1．$\because 270$	$\mathrm{C}_{6} \mathrm{H}_{23} \mathrm{~N}()$	78.2	！），！	6.0	7 （6）${ }^{\text {a }}$	9.9	－）！		
144－149（0．2）	1	（i－4	${ }^{\prime}$	（ $\mathrm{S}_{4} \mathrm{H}_{2}, \mathrm{NO}$	76.7	9．	6.4	76.4	9.9	（6．）		
122（0．2）	1	70		$\left.\mathrm{C}_{16} \mathrm{H}_{3} \mathrm{NO}\right)_{2}$	7\％	¢．！	$\therefore 1$	7：！！	9.1	$\therefore 1$		
154 15！${ }^{\text {c }}$	0	S：；	1	$\left({ }_{46} \mathrm{H}_{45} \mathrm{ClNO}\right)^{\prime \prime}$	（i4． 1	\therefore ¢	11．	（\％．3）	8.5	120		
192－195（0．9）	1	40	\％	$\left({ }_{14} \mathrm{H}_{21} \mathrm{NO}\right)^{2}$	¢1．1	0.0	6.0	71.9	x． 7	5． 7		
117．11！（0． 5 ）	1 ＇	6	1． m （0）	（ $\mathrm{CH}_{1} \mathrm{H}_{4} \mathrm{~N}$	76.1	！：$:$	（i．）	71，	9.4	（；\％		
108 10！（0．1）	Ii	S！	1．525	（ $3_{3} \mathrm{H}_{41} \mathrm{~N} \mathrm{~N}^{\text {a }}$ ）	76.7	！ 1	6.4	780	9.7	（；： 3		
130－132（0）51	P	15：	1．52x	$\left(\mathrm{C}_{65} \mathrm{H}_{23} \mathrm{NO}\right.$	7\％	9， 9	（6） 0		10． 0	万， 3		
12：） 124 （1）．4）	F	\cdots	1． 5199	$\left(3_{36} \mathrm{I}_{5,5} \mathrm{NO}\right.$	7\％	（11）． 2	： 7	－心0	10.2	万，：		
126－127（0．4）	（	א！	1．5\％21	$\left({ }_{45} \mathrm{H}_{33} \mathrm{NO}\right)$	$\%$	9.9	（ 0.0	\％．2	10.1	5.7		
120－121 10 4）	＇T	\therefore	1．5224		7．7	10．2	： 7	\％8．0	10.1	\％		
$121(0.7)$	s	6．）	1．3．342	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}$	7.2	9.9	6.0	76.6	！）！	\％．！		
$114(0 . 心)$	F	91	1． 5218	$\left(3_{6} \mathrm{H}_{4} \mathrm{NO}\right)^{\text {a }}$	77.7	11． 2	5． 7	\％ 7	10．${ }^{3}$	；${ }^{\text {a }}$		
124（0．3）	S	69	1－52！ 2	（6HaNO）	7． 2	9.9	6.11	$77.1)$	10.1	5.7		
112－116（0． 5 ）	F＇	60	1．5184	$\left(4_{66} \mathrm{H}_{5} \mathrm{~N} 0\right)$	77.7	10.2	5.7	\％．1	10． 5	万．心		
1：31－15\％（0．6）	（ 1	42	1．53） 30	$\left({ }_{16} \mathrm{H}_{4,2} \mathrm{NO}\right.$	$\overline{7} .7$	10.2	5.7	77	10.1	5． 1		
124－125）（0．6）	F	N0）	1.5240	$\mathrm{C}_{17} \mathrm{H}_{7} \mathrm{NO}$	Ts． 1	10.4	．） 4	－ホ．2	10．6	－ 1		
$150152(0.7)$	12	24	1.5297	$\mathrm{C}_{17} \mathrm{H}_{-7} \mathrm{NO}$	7s．l	10.4	$\therefore .1$	TS．0	10．5	万， 0		
130 136（0．心）	F＇	：1	1．5235	$\left({ }_{69} \mathrm{H}_{412} \mathrm{~N}\right.$ ）	－	10.6	$\therefore .1$	－8．	10.7	万．：		
146－148（1．03	8	$4!$	1．52！ 5	$\mathrm{C}_{1} \mathrm{H}_{-7} \mathrm{NO}$	\％s．	10.1	5． 4	78．0	11）． 1	万． 0		
129 13\％（1）5）	F＇	so	1．520：	$\left(\mathrm{Crs}_{54} \mathrm{H}_{49} \mathrm{Nt}\right)$	7－．	10.6	$\overline{5} 1$	－8． 6	10．s	4．！		
170）171＂	\％	25）		$\left({ }_{3 .} \mathrm{H}_{43} \mathrm{NO}\right.$	「！ 3	9．：	$\therefore 6$	72．：	8．）	j） S		
14！）150＂	X	6_{i}	1	（ $\mathrm{CH}_{4} \mathrm{H}_{4} \mathrm{ClNO}$	67	92	$1!$	G7．	！） 0	4 ！		
160）162 0 （1）	X	10	1．06\％	（ ${ }_{-1} \mathrm{H}_{6} \mathrm{~N}$（）	741	111	1.1	7！ 1	112	1.6		

40	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{ClH}_{2}\right)_{2} \mathrm{OH}$	182-184(0,6)	X	25	1.5270	$\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3}$	70,3	9.5	4.6	71.1	9.2	4.9		
41	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	106-107a			b	$\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{CINO}_{3}$	62.9	8.8	4.1	63.6	8.8	4.3		
42	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$	102-104 ${ }^{\text {a }}$	X	30	b	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{3}$	65.3	7.2	6.9	65.4	7.6	6.7		
43	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{II}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\underline{p}-\mathrm{NH}_{2}$	254-255 ${ }^{\text {a }}$	X	50	h	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{\text {i }}$	63.5	7.9	6.7	63.4	7.7	6.8		
44	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H		216-218 ${ }^{\text {a }}$	X	30	h	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	59.3	8.4	6.9	59.6	8.3	6.7		
45	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COC}_{6} \mathrm{H}_{5}$	67-68 ${ }^{\text {a }}$	X	75		$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2}$	78.6	8.3	4.0	78.0	8.3	4.0		
46	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COC}_{6} \mathrm{H}_{5}$	$120-121^{a}$			b	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClNO}_{2}$	71.2	7.8	3.6	71.4	7.8	3.7		
47	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHOHC} \mathrm{CH}_{5}$	84-85 ${ }^{\text {a }}$	X	51		$\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{2}$	78.1	8.8	4.0	78.4	8.9	4.0		
48	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHOHC}_{6} \mathrm{H}_{3}$	169-170 ${ }^{\text {a }}$			b	$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{ClNO}_{2}$	70.9	8.3	3.6	70.8	8.4	3.7		
49	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{OCOC}_{2} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{5}$	220-224 (1.0)	X	30	1.5369	$\mathrm{C}_{2}: \mathrm{H}_{3} \mathrm{NO}_{3}$	76.2	8.6	3.4	76.4	8.8	3.7		
50	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{OCOC}_{2} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{5}$	157-158 ${ }^{\text {a }}$			b	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{ClNO}_{3}$	70.1	8.1	3.1	69.7	8.0	3.3		
51	$m-\mathrm{OH}$	CH_{3}	H	CH_{3}	142-143 (0.4)	O	26	e	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}$	75.4	9.0	7.3	75,4	9,2	7,6		
52	$m-\mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	CH_{3}	153-156(0.6)	U	78	e	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$	76.1	9.3	7.8	75.9	9.4	6.7		
53	$m-\mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{3}$	H	CII_{3}	163-165 ${ }^{\text {a }}$			b	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClNO}$	64.6	8.3	5.8	64.7	8.2	6.0		
54	$m-\mathrm{OH}$	$n-\mathrm{C}_{4} \mathrm{H}_{3}$	H	CH_{3}	160-164 (0.4)	U	84	e	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}$	77.2	9.9	6.0	77.7	10.0	5.9		
55	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	H	175-180 (0.6)	U	41	e	$\mathrm{C}_{1} \mathrm{H}_{21} \mathrm{~N} . \mathrm{J}$	76.7	9.7	6.4	77.1	9.3	6.3		
56	$m-() \mathrm{H}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	ClH_{3}	167-169 (1.5)	U	50	e	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}$	77.2	9.9	7.0	78.0	10.2	5.6		
57	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$4-\mathrm{CH}_{3}$	H	175 (0.6)	U	45	e	$\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{NO}$	76.7	9.7	6.4	76.4	9.5	6.7		
58	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$4-\mathrm{CH}_{3}$	CH_{3}	150 (0.8)	U	70	e	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}$	77.2	9.9	6.0	77.1	9.9	6.4		
59	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$5-\mathrm{CH}_{3}$	H	174-180 (0.6)	U	55	e	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$	76.7	9.7	6.4	76.7	10.0	6.7		
60	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$5-\mathrm{CH}_{3}$	CH_{3}	147-149 (0.4)	U	74	e	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}$	77.2	9.9	6.0	77,1	9.9	5.8		
61	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{C}_{2} \mathrm{H}_{3}$	CH_{3}	160-162 (0.9)	U	41	e	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}$	77.7	10.2	5.7	78.0	10.1	5.7		
62	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	154-160 (0.7)	U	72	e	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}$	78.1	10.4	5.4	77.4	10.1	5.3		
63	m-()H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$4-n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	161-165 (0.5)	U	60	e	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}$	78.1	10.4	5.4	78.3	10.5	5.7		
64	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	CH_{3}	H	CH_{3}	114-115(0.3)	V	52	1.5164	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$	72.1	8.2	6.0	71.7	8.2	6.2		
65	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	CH_{3}	H	CH_{3}	146-147 ${ }^{\text {a }}$			b	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClNO}^{j}$	60.3	7.6	5.0	60.1	7.7	5.3		
66	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{3}$	H	CH_{3}	127 (0.4)	V	78	1.5170	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}$	72.8	8.6	5.7	72.6	8.7	5.6		
67	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	H	CH_{3}	138-140(0.4)	V	59	1.5120	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO} \mathrm{O}_{2}$	74.1	9.2	5.1	74.5	9.5	5.2		
68	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	CH_{3}	140-141 (0.8)	V	40	1.5171	$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2}$	74.1	9.2	5. 1	73.2	9.1	4.9		
69	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CO}$	192-195 (0.6)	W	60	e	$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$	71.3	8.3	4.6	71.5	8.4	4.4		
70	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	4-CH3	CH_{3}	126 (0.6)	V	89	1.5133	$\mathrm{C}_{17} \mathrm{H}_{2 .} \mathrm{NO}_{2}$	74.1	9.2	5.1	74.0	9.3	5.4		
71	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$5-\mathrm{CH}_{3}$	CH_{3}	131-133 (0.8)	V	80	1.5100	$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2}$	74.1	9.2	5.1	74.5	9.1	5.2		
72	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	142-144 (0.5)	V	90	1.5195	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$	74.7	9.4	4.8	74.7	9.7	4.8		
73	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CH}_{3} \mathrm{CO}$	166-170 (0.5)	W	40	e	$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$	71.9	8.6	4.4	71.7	9.1	3.9		
74	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$2-n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	138-140(0.7)	V	63	1.5145	$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}$	75.2	9.6	4.6	74.4	9.5	4.3		
75	$m-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	142-146 (0.8)	V	60	1.5086	$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2}$	74.1	9.2	5.1	74.5	9.3	5.4		
76	$m-n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	146-150(1.0)	V	45	1.5054	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$	74.7	9.4	4.8	75.0	9.8	5.0		
77	$m-i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	146-148(1.0)	V	40	1.5060	$\mathrm{C}_{8} \mathrm{H}_{27} \mathrm{NO}_{2}$	74.7	9.4	4.8	74.9	9.3	5.6		
78	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	$115(0.8)$	Y	61	1.5239	$\mathrm{C}_{64} \mathrm{H}_{23} \mathrm{NO}$	77.2	9.9	6.0	77.1	9.9	5.9	$+18.3$	1.0
79	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	160 (0.8)	U	88	e	$\mathrm{C}_{4} \mathrm{H}_{24} \mathrm{NO}$	76.7	9.7	6.4	76.4	9.7	6.6	$+17.2$	1.2
80	$m-\mathrm{OH}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	II	CH_{3}	142-145 ${ }^{\text {a }}$			b	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{ClNO}$	65.7	8.7	5.5	65.9	8.9	5.8	+14.8	0.9
81	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	138-139 (1.1)	V	84	1.5144	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$	73.5	8.9	5.4	5.4	8.8	5.3	$+18.4$	1.0
82	$m-\mathrm{CH}_{3} \mathrm{O}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	111 (0.6)	Y	57	1.5244	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}$	77.2	9.9	6.0	77.3	9.9	6.0	-20.3	1.1
83	m-OH	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	153-154 (0.5)	U	92	\%	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$	76.7	9.7	6.4	76.2	9.7	6.7	-19.4	1.0
84	m - OH	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	$145-147^{a}$			b	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{CINO}$	65.7	8.7	5.5	65.6	8.7	5.4	-11.3	0.85
85	$m-\mathrm{CH}_{3} \mathrm{CO}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	CH_{3}	129 (0.6)	V	88	1.5139	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$	73.5	8.9	5.4	73.3	8.8	5.3	-19.2	1.0

[^3] distillation. ${ }^{a}$ N-oxide. ${ }^{h}$ Dihydrochloride. ${ }^{i}$ Quarter molecule of water. ${ }^{i}$ Hemilydrate,

Tlble ${ }^{-}$
linc: Sberimtrona

CH:

Nי.	$1{ }^{\prime \prime}$	potemer ${ }^{\text {a }}$	(a)g. of hase, kg . $)^{\text {b }}$	(0.8×133)
$\mathrm{R}=1) \mathrm{H}$				
1	H	$2 \cdot 5$	83	1.11
611	- $\mathrm{Cl}^{\left(\mathrm{H}_{3}\right.}$	20	7	1.4
50	$2-\mathrm{CH}_{3}$	1.2	17	1.1
61	$2-\mathrm{C}_{2}^{4} \mathrm{H}_{5}$	0.8	$\cdots(i$	0.7
(0)	- $-\mathrm{n}^{-\mathrm{Ca}_{3} \mathrm{H}_{4}}$	(1) ら) ${ }^{\text {r }}$	7	(0.4)
SS	4-C. H_{3}	(0) 2 ${ }^{\text {r }}$	115	(1) 2)
(6)	$4-{ }^{-} \mathrm{C}_{3} \mathrm{FH}$	(1) : $)^{\prime}$	84	(0, 2)
$\mathrm{R}=\mathrm{CH}_{3} \mathrm{CO}_{2}$				
d	H	1.7	97	1, $\overline{1}$
71	$5-\mathrm{CH}_{3}$	1.7	-i)	1.
(6)	${ }_{2} \mathrm{-CH}_{3}$	1.7	! 11	1.4
72	$2-\mathrm{C}_{2} \mathrm{H}_{5}$	0.37	$163{ }^{7}$	1). 5
74	$2-n-\mathrm{C}_{3} \mathrm{H}_{4}$	(0.3)	10;	(1).3)
70	$4-\mathrm{CH}_{3}$	(0.2)	101)	(0.2)
$k=\mathrm{CH}_{3} \mathrm{O}$				
d	H	1.:	67	0.8
310	$5-\mathrm{CH}_{3}$	1.2		11.7
26	$2-\mathrm{CH}_{3}$	0.8	7	0.6
: 2	${ }_{2}-\mathrm{C}_{2} \mathrm{H}_{5}$	1.1	38	0.8
34	$2-n-\mathrm{C}_{3} \mathrm{H}_{7}$	0.7	7	1) $\overline{5}$
2 S	4-CH3	Noned	65	
36	$4-n-\mathrm{C}_{3} \mathrm{H}_{7}$	(0.3)	7	(1).is)

" Relative to codeine (base/base), 30 min . after treatment. "From small numbers of young, male, Sprague-1)awler rato ol differing lots. * 1,2-Dimethyl-3-pheny1-3-propionoxypyrobidine of the earlier ester series is equal to 1. ${ }^{\text {d }}$ See ref. 2. ${ }^{\circ}$ Figures in parentheses were obtained by extrapolation. The effert. equivalent to 11.3 mg . of codeine base $/ \mathrm{kg}$., was nol arinally attamed at one-fourth the lethal dose. Base diroolved in vernlableoil. at one-fourth the letmal dose.
a stirred solution of sodium cyanide (14.2 g .) in dimethyl sulfoxide (80 ml .) at 110°; an exothermic reaction occurred and the temperature rose to 140°. The mixture was held at 110° for 3 hr., cooled, and poured into ice-water, and the oil was isolated with ether and fractionally distilled to give two components, b.p. $73-80^{\circ}(0.8 \mathrm{~mm}),. 15 \mathrm{~g}$. , and b.p. $108-112^{\circ}(0.8 \mathrm{~mm}$.$) ,$ 25 g . The first of these was m-methoxy- β-ethylstyrene: $\lambda_{\text {.max }} 216,254$, and $295 \mathrm{~m} \mu(631,31010,14,200$, and 3230).

Anal, Caled. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}$: C, 81.4; H, 8.7. Found: C, 80.9; H, 8.9.
The second fraction was $\alpha-m$-methoxyphenylvaleronitrile (Table I).

Pharmacology

Acute lethal toxicities and antinociceptive (analgetic) activities were determined in young male rats by the intraperitoneal route as described earlier by Cavalla, et al. ${ }^{1}$ When possible, soluble addition salts, or bases with equivalents of HCl , were dissolved in $0.9 \% \mathrm{NaCl}$. Exceptions forced by poor solubilities are noted in Tables V and VI.

It was shown earlier ${ }^{2}$ that substitution on the phenyl nucleus is necessary for activity in this series. The specifie nature of the required substitution is now examined in more detail in Table VII. It is inferred that substitution of an oxygen function $\left(\mathrm{HO}, \mathrm{AlkCO}_{2}\right.$,

Table \I

- Bentretors on me Normas

K

$R^{\prime \prime}$

"Fommote a Table V. "Foomole b, Table V. Funtmone : Table 1. "Nee ref. 2. 'Footnore e. Table V. F Fuolnute g. 'Table I '. a Footnote f, 'l'able I. ${ }^{h}$ Partly dissolved, batance suspended. ${ }^{i}$ Just aboul wodene grade at one-fourth the lethat dose; probably biased upward by relatively poorer mblubility al lethal dome levels.
or $\left(\mathrm{H}_{8} \mathrm{O}\right)$ in the meta position converts an inactive compound into a clearly active one, ${ }^{2}$ that such substitution at no other position does this, that further substitution of $\mathrm{CH}_{3} \mathrm{O}$ or OH in the para position substantially annuls the activity, and that CH_{3} or Cl camnot serve in place of the meta-oxygen function.

The nearly uniform activities of the various esters of the meta phenol (Table VII) suggest that these activities may result from in vivo hydrolysis to the more active phenol. Methyl etherification gives somewhat lower activity and greater toxicity, ${ }^{2}$ either with the optimal 3 -n-propyl configuration (Table VII) or with a nonoptimal 3-configuration (Table VIII).

Of $3-n$-alkyl substitutions on the pyrrolidine ring, the n-propyl, earlier ${ }^{2}$ found good, is seen in Table VIII to be probably optimal, although fairly good activity can also be obtained with n-butyl or ethyl. Going io methyl results in failure.

The good activity found ${ }^{2}$ earlier when substitution in the pyrrolidine ring occurred only at positions 1 and 3 could not be improved with additional substitution (Table V). Methylation at $\overline{5}$ apparently resulted in a

Table VII
Substitution on Pheiyh.

No.	1 l	$\begin{aligned} & \text { Estd. } \\ & \text { i.p. } \end{aligned}$	Estal. ar. i.p. lethal lose	Potency \times lethal dose ${ }^{c}$
		putency ${ }^{\text {a }}$	(ilig. of base/kg. ${ }^{\text {b }}$ b	(0.8 $\times 133)$
	meta			
d	OH	2.5	$8: 3$	1.9
d	$\mathrm{CH}_{3} \mathrm{CO}_{2}$	1.7	97	1.5
75	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2}$	1.8	91	1.6
76	$n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}$	1.7	137	2.2
77	$i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}$	1.7	$10 ;$	1.6
d	$\mathrm{CH}_{3} \mathrm{O}$	1.3	67	0.8
15	CH_{3}	(0.4) ${ }^{\text {e }}$	62	(0.2)
14	Cl	None ${ }^{\text {f }}$	61	...
d	H	None ${ }^{\text {f }}$	65	
para				
17	HO	(0.2) ${ }^{\text {e }}$	122	(0.3)
18	$\mathrm{CH}_{3} \mathrm{CO}_{2}$	(0.1) ${ }^{\text {e }}$	154	(0.2)
16	$\mathrm{CH}_{3} \mathrm{O}$	(0.3) ${ }^{\text {e }}$	92	(0.2)
	meta, para			
20	$(\mathrm{OH})_{2}$	(0.1) ${ }^{\text {e }}$	223	(0.2)
19	$\begin{gathered} \left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \\ \text { ortho } \end{gathered}$	Nonef	68	\ldots
12	HO	Nonef	17	\ldots
11	$\mathrm{CH}_{3} \mathrm{O}$	Nonef ${ }^{\text {f }}$	31	...

${ }^{a}$ Footnote a, Table V. ${ }^{b}$ Footnote b, Table V. ${ }^{c}$ Footnote c, Table V. ${ }^{d}$ See ref. 2. ${ }^{\text {e Footnote } e, ~ T a b l e ~ V . ~}{ }^{i}$ Footnote g, Table V.

${ }^{a}$ Footnote a, Table V. ${ }^{b}$ Footnote b, Table V, ${ }^{c}$ Footnote c, Table V. ${ }^{d}$ See ref. 2. ${ }^{\bullet}$ Footnote e, Table V,
slight decrease in activity and,or an increase in toxicity. Alkylation at 4 destroyed clear activity. 2-Alkylation had intermediate effects, leading to the disappearance of clear activity with propyl except where the phenolic
function was etherified; in this circumstance fairly good activity remained. The steep, downward gradation of activity of the phenol (and hydrolyzable ester?) with heaviness of 2-alkylation is reminiscent of the parallel gradation in zwitterionic character toward steep diminution in NH^{+}absorption in the $2500-3500-\mathrm{cm} .^{-1}$ region (vide supra). meta Etherification seemingly nuzzles this graded intramolecular interaction with its presumed influence on biological activity.

The good activity originally ${ }^{2}$ found with tertiary N methylation could not be improved (Table VI). Indeed, with two exceptions, any other N-substitution tried, or the secondary amine, failed to yield a clear grade of activity. The two clear exceptions were phenethylamine, with $p-\mathrm{NO}_{2}$ or $-\mathrm{NH}_{2}$.

A dozen compounds of Table IV in addition to those listed, in Tables V-IX were studied pharmacologically. All were secondary amines and/or lacked the metaoxygen function; none attained a clear grade of antinociceptive activity.

c) Table V. ${ }^{a}$ See ref. 2.

In the three structures resolved ($m-\mathrm{OH}, m-\mathrm{CH}_{3} \mathrm{CO}_{2_{1}}$ $m-\mathrm{CH}_{3} \mathrm{O}$), the levo isomers were, in general, twice as potent as the dextro (Table IX), with racemates intermediate. Oral comparisons of the phenols have yielded a ratio much closer to $2: 1$ than the estimates in Table IX suggest for this structure.

The present series of 3 -alkylpyrrolidines differs in several respects in structure-activity relationships from the older 3-acyloxypyrrolidines. ${ }^{1}$ The optimal structure is three or four times as active in the present series, presumably reflecting a more nearly specific receptor complimentariness. Thus, approaching nearer to the more potent central analgetics in receptor fit, alterations of structure have sharper effects on activity and, coincidentally, the levo enantiomer rather than the dextro becomes the more potent.

Lacking the 3 -oxygen function of the older series, the present series apparently requires a meta-oxygen function on the phenyl nucleus; any alteration from simple
phenyl tried in the 3-oxy series had been deleterions. Whereas the 3-oxy series had required 2 - or 4 -substitution on the pyrrolidine ring, the meta-oxy serice suffers slight 10 complete loss of activity on ring substitution additional to $1,3-$, in the order $5-2,2,4$. There are interesting relationships in the meta-oxygen series between heaviness of 2-alkylation, gradation in zwitterionic character, and loss of activity. neta Etherificaion seemingly muzzles considerably these interactions of 2 -alkylation.
linally, effects of alterations in N-substitution are much sharper in the meta-oxygen series than in the
older series. Replaring methyl is, in most instances. clearly deletrious.

Acknowledgment--The authors thank Dr. R. E. Bowman and Dr. H. M. Crooks, Jr., for helpful advice and consultation, Mr: F. H. Oliver for the microanalyses, Miss F. M. Tamer for the physical measurements, Mr. K. F. Richards for help in the resolution of the parent compound, and Miss L. Scotti, Miss J. Waxy and MLrs. S. Stanat for important participation in the pharmacological work.

Bicyclic Homologs of Piperazine. VII. ${ }^{1}$ Synthesis and Analgesic Activity of 3-Aralkenyl-8-propionyl-3,8-diazabicyclo[3.2.1]octanes

(ilorgio Clgnarella, Emhao Occelif, Ani) Eimio Testa
Laboratorive of Lepetit S.p.A., Milar, Ilaty

Receiver Dercmber 28, 106't

Abstract

With the aim of enhancing the analgesic activity of 3 -cimamyl-8-propionyl-i, 8 -1 Hazabicyclo[3.2.1]octane (1), $2 \overline{0}$ derivatives were synthesized in which the 3 -aralkenyl group was variouly mudified. Some of these compounds exhibited an analgesic potency comparable with that of 1 .

In the preceeding paper of this series, ${ }^{1}$ the synthesis of analgesic 3-substituted 8-propionyl-3,8-diazabicyclo[3.2.1]octanes was reported and the effect of the 3-and 8 -substituent on the artivity was discussed. It was observed that the greatest analgesic action is associated with the presence in the 8 -position of a propionyl group and in position 3 of an aralkyl group whose aliphatic chain consisted of three carbon atoms.

Unsaturation of this chain markedly enhanced the analgesic potency, the 3 -cimamyl-8-propionyl-3,8-diazabicyclo [3.2.1]octane (1, Table I) being the most active compound of the series, approximately 10 times more potent that morphine hydrochloride. It seemed, therefore, of interest to study the effects on the analgesic activity of the introduction of substituents in the cimanyl group. We describe in this paper the syn-
stitutions on the aromatic ring (2-12) and on the ethylenic bond (13-17), replacement of the phenyl with α naphthyl group (18) and with hydrogen (21), change in the unsaturation (22) and/or in the length of the aliphatic chain (19, 20, and 23), and replacement of the methylene group of the aliphatic chain with a carbonyl (24). In addition, two other derivatives (25 and 26) were synthesized in which the position of the propionyl and of the aralkenyl groups was reversed.

Chemistry-Preparation of compounds listed in Table I was effected by condensing 8-propionyl-3.8diazabicyclo[3.2.1]octane ${ }^{1}$ (I) with aralkenyl chlorides II (2-18, 20, and 23), allyl bromide (21), phenylpropargyl bromide (22), and cimamoyl chloride (24). Condensation of I with phenylacetaldehyde according to the method of Mannich" led to 19. Compounds 25 and 26 were prepared by eondensing 3-propionyl-3,8-diazabicyclo [3.2.1] octane ${ }^{3}$ (III) with cinnamyl- and p-cthoxycinnanyl chloride, respectively. It is to be noted that 26 was first isolated during attempts to condense I with p-cthoxycimamyl chloride; in this case the

theses and the properties of a number of 8-propionyl-3,8-diazabicyelo[3.2.1]octanes, in which the cinnanyyl group of the model compound 1 was modified by sub-
reaction conditions (refluxing in benzene for 15 hr .) clearly favored an $\mathrm{N}_{8} \rightarrow \mathrm{~N}_{3}$ acyl migration ${ }^{3}$ of I to the
(2) (Mannich and H. Mavidsen, Ber., 69B, 2106 (1936).
(3) (1. Ciguarella, E. Tessa, and C. R. Pasqualucei, Tetrahetron. 19. $11: 3$ (1916;3).

[^0]: (1) J. F. Cavalla, J. Davoll, M. J. Dean, C. S. Franklin, D. M. Temple, J. Wax, and C. V. Winder, J. Med. Pharm. Chem., 4, 1 (1961): J. F. Cavalla,

 (2) J. F. Cavalla, R. Jones, M. Wilford, J. Wax, and C. V. Winder, (bid. 7. 412 (1964).
 (19\%).

[^1]:

[^2]: 1954).
 (8) E. Spath and 1. Brensch, Mouratsh. 50, 349 (1928).
 (9) Melting pointe are uncorructed, the work being completed befort lwe wauirements of Anerican (hunical Society publications were known.
 (1di 1. V. Mirray inid 1. B. Cloke, J. Am. Chem. Soc., 68, 126 (1946;

[^3]: ${ }^{a}$ Melting point. ${ }^{b}$ Hydrochloride. ${ }^{c}$ Chlorine analysis, ${ }^{a}$ Hydrobromide, ${ }^{6}$ Too viscous for measurement. ${ }^{f}$ Prepared by the reduction of the crude chloromitrile followed by fractional

